Prévision par Smoothing Techniques Ce site fait partie des objets d'apprentissage JavaScript E-Labs pour la prise de décision. Les autres JavaScript de cette série sont classés dans différents domaines d'application dans la section MENU de cette page. Une série chronologique est une séquence d'observations qui sont ordonnées dans le temps. Inherente à la collecte de données prises dans le temps est une forme de variation aléatoire. Il existe des procédés pour réduire l'annulation de l'effet dû à une variation aléatoire. Les techniques largement utilisées sont le lissage. Ces techniques, lorsqu'elles sont correctement appliquées, révèlent plus clairement les tendances sous-jacentes. Saisissez la série chronologique en ordre, en commençant par le coin supérieur gauche et le ou les paramètres, puis cliquez sur le bouton Calculer pour obtenir une prévision à une période. Les cases en blanc ne sont pas incluses dans les calculs mais les zéros sont. Lorsque vous entrez vos données pour passer d'une cellule à une cellule dans la matrice de données, utilisez la touche Tabulation et non la flèche ou entrez les touches. Caractéristiques des séries temporelles, qui pourraient être révélées en examinant son graphique. Avec les valeurs prévues, et le comportement des résidus, la prévision des conditions de modélisation. Moyennes mobiles: Les moyennes mobiles se classent parmi les techniques les plus populaires pour le prétraitement des séries chronologiques. Ils sont utilisés pour filtrer le bruit blanc aléatoire à partir des données, pour rendre la série temporelle plus lisse ou même pour mettre l'accent sur certains composants informatifs contenus dans la série chronologique. Lissage exponentiel: Il s'agit d'un schéma très populaire pour produire une série chronologique lissée. Alors que dans les moyennes mobiles les observations passées sont pondérées également, le lissage exponentiel attribue des poids exponentiellement décroissants à mesure que l'observation vieillit. En d'autres termes, les observations récentes donnent relativement plus de poids dans les prévisions que les observations plus anciennes. Double lissage exponentiel est mieux à la manipulation des tendances. Triple Exponential Smoothing est mieux à la manipulation des tendances parabole. Une moyenne mobile exponentiellement pondérée avec une constante de lissage a. Correspond approximativement à une moyenne mobile simple de longueur (c'est-à-dire période) n, où a et n sont liés par: a 2 (n1) OR n (2 - a) a. Ainsi, par exemple, une moyenne mobile exponentiellement pondérée avec une constante de lissage égale à 0,1 correspondrait approximativement à une moyenne mobile de 19 jours. Et une moyenne mobile simple de 40 jours correspondrait approximativement à une moyenne mobile exponentiellement pondérée avec une constante de lissage égale à 0,04878. Holts Linear Exponential Smoothing: Supposons que la série temporelle soit non saisonnière mais affiche la tendance. Holts méthode estime à la fois le niveau actuel et la tendance actuelle. Notons que la moyenne mobile simple est un cas particulier du lissage exponentiel en définissant la période de la moyenne mobile sur la partie entière de (2-Alpha) Alpha. Pour la plupart des données commerciales, un paramètre Alpha inférieur à 0,40 est souvent efficace. Cependant, on peut effectuer une recherche de grille de l'espace des paramètres, avec 0,1 à 0,9, avec des incréments de 0,1. Ensuite, le meilleur alpha a la plus petite erreur absolue moyenne (erreur MA). Comment comparer plusieurs méthodes de lissage: Bien qu'il existe des indicateurs numériques pour évaluer la précision de la technique de prévision, l'approche la plus répandue consiste à utiliser la comparaison visuelle de plusieurs prévisions pour évaluer leur exactitude et choisir parmi les différentes méthodes de prévision. Dans cette approche, on doit tracer (en utilisant par exemple Excel) sur le même graphe les valeurs d'origine d'une variable de série temporelle et les valeurs prédites à partir de plusieurs méthodes de prévision différentes, facilitant ainsi une comparaison visuelle. Vous pouvez utiliser les prévisions passées par Smoothing Techniques JavaScript pour obtenir les valeurs de prévisions antérieures basées sur des techniques de lissage qui n'utilisent qu'un seul paramètre. Holt et Winters utilisent deux et trois paramètres, respectivement, donc il n'est pas facile de sélectionner les valeurs optimales, voire presque optimales par essai et les erreurs pour les paramètres. Le lissage exponentiel simple met l'accent sur la perspective à courte portée qu'il définit le niveau à la dernière observation et est basé sur la condition qu'il n'y a pas de tendance. La régression linéaire, qui correspond à une ligne de moindres carrés aux données historiques (ou aux données historiques transformées), représente la longue portée, conditionnée par la tendance de base. Le lissage linéaire linéaire de Holts capture des informations sur la tendance récente. Les paramètres dans le modèle de Holts sont les niveaux-paramètres qui devraient être diminués quand la quantité de variation de données est grande, et les tendances-paramètre devraient être augmentés si la direction de tendance récente est soutenue par le causal certains facteurs. Prévision à court terme: Notez que chaque JavaScript sur cette page fournit une prévision à un pas. Obtenir une prévision en deux étapes. Ajoutez simplement la valeur prévue à la fin de vos données chronologiques et cliquez sur le même bouton Calculer. Vous pouvez répéter ce processus pour quelques reprises afin d'obtenir les prévisions à court terme nécessaires. Données lissantes supprime la variation aléatoire et montre les tendances et les composantes cycliques Inhérente dans la collecte de données prises dans le temps est une forme de variation aléatoire. Il existe des procédés pour réduire l'annulation de l'effet dû à une variation aléatoire. Une technique souvent utilisée dans l'industrie est le lissage. Cette technique, lorsqu'elle est correctement appliquée, révèle plus clairement la tendance sous-jacente, les composantes saisonnières et cycliques. Il existe deux groupes distincts de méthodes de lissage Méthodes de moyenne Méthodes de lissage exponentielles Prendre des moyennes est le moyen le plus simple de lisser les données Nous allons d'abord étudier certaines méthodes de calcul de la moyenne, comme la moyenne simple de toutes les données passées. Un gestionnaire d'un entrepôt veut savoir combien un fournisseur typique livre en unités de 1000 dollars. Heshe prélève au hasard un échantillon de 12 fournisseurs, obtenant les résultats suivants: Moyenne ou moyenne calculée des données 10. Le gestionnaire décide d'utiliser cette estimation comme estimation des dépenses d'un fournisseur type. Est-ce une bonne ou mauvaise estimation L'erreur quadratique moyenne est un moyen de juger de la qualité d'un modèle? Nous calculons l'erreur quadratique moyenne. Le montant exact de l'erreur dépensé moins le montant estimé. L'erreur au carré est l'erreur ci-dessus, au carré. Le SSE est la somme des erreurs au carré. Le MSE est la moyenne des erreurs au carré. Les résultats sont: Erreur et carré Erreurs L'estimation 10 La question se pose: pouvons-nous utiliser la moyenne pour prévoir le revenu si nous soupçonnons une tendance Un regard sur le graphique ci-dessous montre clairement que nous ne devrions pas le faire. La moyenne moyenne de toutes les observations passées est seulement une estimation utile pour la prévision quand il n'y a pas de tendances. S'il ya des tendances, utilisez des estimations différentes qui tiennent compte de la tendance. La moyenne pèse toutes les observations passées également. Par exemple, la moyenne des valeurs 3, 4, 5 est 4. On sait, bien sûr, qu'une moyenne est calculée en additionnant toutes les valeurs et en divisant la somme par le nombre de valeurs. Une autre façon de calculer la moyenne est d'ajouter chaque valeur divisée par le nombre de valeurs, ou 33 43 53 1 1.3333 1.6667 4. Le multiplicateur 13 est appelé le poids. En général: bar fraction somm de gauche (frac droite) x1 gauche (frac droite) x2,. ,, Gauche (frac droite) xn. La différence entre une moyenne mobile simple et une moyenne mobile exponentielle La seule différence entre ces deux types de moyenne mobile est la sensibilité de chacun Montre les changements dans les données utilisées dans son calcul. Plus précisément, la moyenne mobile exponentielle (EMA) donne une pondération plus élevée aux prix récents que la moyenne mobile simple (SMA), tandis que la SMA attribue une pondération égale à toutes les valeurs. Les deux moyennes sont semblables parce qu'elles sont interprétées de la même manière et sont utilisées couramment par les négociants techniques pour lisser les fluctuations de prix. Le SMA est le type le plus courant de moyenne utilisé par les analystes techniques et il est calculé en divisant la somme d'un ensemble de prix par le nombre total de prix trouvé dans la série. Par exemple, une moyenne mobile de sept périodes peut être calculée en additionnant les sept prix suivants ensemble, puis en divisant le résultat par sept (le résultat est également connu sous le nom de moyenne arithmétique moyenne). Exemple Étant donné les séries suivantes de prix: 10, 11, 12, 16, 17, 19, 20 Le calcul de la SMA ressemblerait à ceci: 10111216171920 105 SMA 1057 de 7 périodes 15 Puisque les EMA placent une pondération plus élevée sur les données récentes que sur les données plus anciennes , Ils sont plus réactifs aux derniers changements de prix que les SMA, ce qui rend les résultats des EMA plus opportuns et explique pourquoi l'EMA est la moyenne préférée parmi de nombreux commerçants. Comme vous pouvez le voir sur le graphique ci-dessous, les commerçants ayant une perspective à court terme ne se soucient peut-être pas de la moyenne utilisée, puisque la différence entre les deux moyennes est habituellement une question de cents. D'autre part, les opérateurs à plus long terme devraient accorder plus d'importance à la moyenne qu'ils utilisent parce que les valeurs peuvent varier de quelques dollars, ce qui est assez d'une différence de prix pour finalement s'avérer influent sur les rendements réalisés - surtout lorsque vous êtes Le commerce d'une grande quantité de stock. Comme avec tous les indicateurs techniques. Il n'ya pas un type de moyenne qu'un commerçant peut utiliser pour garantir le succès, mais en utilisant l'essai et l'erreur, vous pouvez sans aucun doute améliorer votre niveau de confort avec tous les types d'indicateurs et, par conséquent, augmenter vos chances de prendre de bonnes décisions commerciales. Pour en savoir plus sur les moyennes mobiles, consultez la rubrique Bases des moyennes mobiles et principes de base des moyennes mobiles pondérées.
No comments:
Post a Comment